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ABSTRACT 

We report numerical calculations of the heating of charged 
particles by turbulent electric fields. The fields are given, -= 
particles. 
which is analytically unmanageable: 
phases and velocities; ( 2 )  one wave, randomly interrupted phase; 
( 3 )  one wave, slowly varying wave number at constant frequency. 
Large particle energization is found in the last two cases. 
In all three cases, the results can be qualitatively understood 2 
by elementary arguments related to particle "trapping." 

and are not required to be self-consistently supported by the -- - a -  

Three types of wave spectra are treated, each of C.4 
(1) many waves, constant 
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I. INTRODUCTION 

Recent experiments on turbulent heating devicd 
have directed attention to details of the processes 
by which rapidly fluctuating electric fields trans- 
fer energy to the thermal motions of a plasma. 

The plasma in these devices is usually far from 
the state in which theorists like to idealize it 
(uniform, quiescent, noise-free, weakly perturbed, 
etc.). It is not obvious that analytical attacks on 
such a plasma are of any use. 
least as complicated as in aerodynamic turbulence 
theory, where agreed-upon analytical results are 
rare. So far, the linearized Vlasov industry has 
shed little light on turbulent heating of a plasma. 

In an effort to understand the turbulent 
heating process we have done computations with an 
IBM 360/65 on charged particle heating by a super- 
position of electrostatic waves. 
is assumed known, one of the input parameters of the 
problem along with the initial phase space locations 
of the particles. 
stage artificially to separate the orbit theory 
from the self-consistent aspects of the problem, and 
discard the latter. 

The situation is at 

The wave spectrum 

It has seemed advisable at this 

Our objective has been to achieve a physical 
understanding of the way given spectra heat ( o r  fail 
to heat) an assemblage of charged particles. Once 
it is determined what sorts of spectra heat most 
efficiently, the next step would appear to be to 

attempt to tailor these spectra in laboratory de- 
vices. Recently developed techniques of measuring 

field correlations in the Ghz range2 have improved 

the chances f o r  being able to do this. It appears 
to us hopeless to attempt a comprehensive theory 
of any turbulent heating--analytical E numerical. 

11. FORMULATION OF THE PROBLEM 

We now remark on the formulation of the heating 
problem for turbulent electric fields. We shall 
work throughout with idealized one-dimensional 
*particles" and fields. 

The equation of motion of a particle is 

3 t )  = a t )  = E(t) (1) 

where E(t) (q/m)E(x(t),t). The position and 
velocity are x(t), v(t), the charge-to-mass ratio is 
q/m, and E(x,t) is the electric field as a function 
of x and t. 
unless E(x,t) becomes time-independent in some 
coordinate frame. 

Equation (1) is not generally solu$le 

The trajectory of one particle is often of 
little interest, and our attention may be directed 
to one of two kinds of ensemble averages: 

(1) Averages over an ensemble of initial co- 
ordinates ~(01, v(0) for one given E(x,t). 

( 2 )  Averages over an ensemble of electric 
fields for one given initial x(O), v(0). 
venience, we may choose x(0) = 0. 

For con- 

The two averages are not the same, and it has 
seemed to us generally preferable to compute the 
second. 

The electric field is generally expressed as 



E(x, t )  = & Ei cos (k .  x - w . t  t $i) ,  ( 2 )  

with given f i e l d  amplitudes E i ,  wave numbers ki and 

phases $i. 

phases $ i ,  and i s  indica ted  by a bracket  < >. The 
Eiy kiy wi, x(0) a r e  not averaged over, as a r u l e .  

The average is t h e r e f o r e  over what happens t o  ident-  
i ca l  p a r t i c l e s  re leased  i n  plasmas with i d e n t i c a l  
spec t ra ,  but  with phases which d i f f e r  from plasma t o  
plasma. 

The ensemble averaging i s  over t h e  

We are i n t e r e s t e d  i n  two q u a n t i t i e s  more than 

t h e  o thers ,  t h e  average ve loc i ty  <v>, and t h e  average 

spread i n  v e l o c i t i e s  which we c a l l  t h e  k i n e t i c  
2 .  "temperature" <(v-<v>) >. 

out a t  zero,  and one way of  formulating t h e  goals  of  

t h e  turbulen t  heat ing problem is t o  make <(v-<v>) > 

as l a r g e  as possible  as fas t  as poss ib le  with a 

f ixed  amount of f i e l d  energy ava i lab le .  

The l a t t e r  always starts 
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111. RESULTS 

. We usual ly  work i n  dimensionless4 var iab les  

f o r  which t h e  equat ions of motion take t h e  form 

k ( t )  v ( t )  

We t u r n  now t o  a summary of  some of  t h e  r e s u l t s  

of  t h e  numerical s o l u t i o n  t o  Eqs. (31,  first making 

some genera l  remarks which a r e  usefu l  i n  i n t e r -  

p r e t i n g  t h e  r e s u l t s .  

A.  ONE WAVE, CONSTANT PHASE 

A u s e f u l  concept has proved t o  be t h e  "trapping 

width" of  a wave. The system ( 3 )  is  only ana ly t i -  

c a l l y  solvable  f o r  t h e  case N=l, as is wel l  known. 

The s o l u t i o n  is express ib le  i n  terms of Jacobian 

e l l i p t i c  funct ions,  and t h e  proper t ies  of  t h e  solu- 

t i o n  can be summarized as follows. For v(0)  f a r  

from t h e  phase ve loc i ty  wl/kl, t h e  o r b i t  x ( t ) ,  v ( t )  

is only s l i g h t l y  def lec ted  from its f r e e  f l i g h t  

value x(0)  + tv(O),v(O). Those p a r t i c l e s  whose o r b i t s  

a r e  g r e a t l y  modified are those whose v e l o c i t i e s  l i e  

within a d i s t a n c  c E F =  f 2 7 of  wl/kl. We ca l l  

t h i s  range of  ve loc i ty  space t h e  " t rapping range" of  

t h e  wave. 

o /k ( t h e  *'wave frame"), t h e  p a r t i c l e ' s  energy is 

w E ( ~ ( 0 ) )  / 2  - (El/kl) cos 4,. If w < El/k19 t h e  

p a r t i c l e  is  "trapped," i .e . ,  its o r b i t  has  turn ing  

p o i n t s  i n  ve loc i ty  i n  t h e  wave frame. 

p a r t i c l e s  o s c i l l a t e  i n  ve loc i ty  i n  t h e  wave frame 

In  t h e  frame which moves with ve loc i ty  

l 1  2 

Trapped 

. 
ranges from t h e  " t rapping t i m e "  

i n f i n i t y  when w goes from i ts  minimum 

The maximum v e l o c i t y  increment a 

p a r t i c l e  can acquire  from a s i n g l e  wave is  of t h e  

order  of 4 m .  

B. SEVERAL WAVES, CONSTANT PHASES 

This simple i n t e r p r e t a t i o n  of  p a r t i c l e  t rapping 

f a i l s  when N > 1 ,  bu t  it is s t i l l  u s e f u l  t o  th ink  of  

t h e  waves as occupying a " t rapping range," 

By repeated numerical s o l u t i o n  of  Eqs. ( 3 ) ,  we have 

es tab l i shed  t h a t  p a r t i c l e s  w i l l  genera l ly  make long 

hops i n  ve loc i ty  space i f ,  and only i f ,  t h e  two 

regions of ve loc i ty  space are connected by t h e  over- 

lapping t rapping widths of  waves. 

One immediate consequence of  t h i s  is t h a t  many 

l i t t l e  waves w i l l  heat  t h e  p a r t i c l e s  h o t t e r  than 

one b i g  one, given a fixed amount of t o t a l  wave 

energy. This is because, as t h e  number of  waves 

increases ,  t h e  amplitude fa l l s  of f  as N-', so t h e  

t rapping width f a l l s  o f f  as N-'. The t o t a l  width 

of  ve loc i ty  t h a t  can be spanned by t h e  waves goes 

as N - N +  = &. 
This e f f e c t  is i l l u s t r a t e d  i n  Fig. 1, where 

2 <(v-<v>) > i s  p l o t t e d  aga ins t  time f o r  one wave and 

t e n  waves, with t h e  same t o t a l  value of 

N 2  1 ci. The p a r t i c l e s  are heated about a f a c t o r  of  
i=l 

t h r e e  h o t t e r  i n  t h e  t e n  wave case. 

Discussion of t h e  Constant Phase Cases 

Beyond t h e  simple conclusion t h a t  p a r t i c l e s  

w i l l  only go where t h e r e  a r e  waves i n  v e l o c i t y  

space,  t h e r e  have been few s u r p r i s e s .  

We have not had noteworthy success  i n  f i t t i n g  

t h e  r e s u l t s  of  t h e  computations with such a n a l y t i c a l  

theory as t h e r e  is f o r  t h i s  p r ~ b l e m . ~  

t h e  Fokker-Planck equation 

For example, 

where f ( v , t )  is t h e  ve loc i ty  d i s t r i b u t i o n  funct ion 

and D(v,t) i s  t h e  d i f f u s i o n  c o e f f i c i e n t  

has  f e w  a n a l y t i c a l  consequences which can be 
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extracted, and such consequences as it does have 

apply to the case where k is a continuously- 
distributed, rather than a discrete, variable (such 
as the development of a "plateau" in the distribu- 
tion f; it is worth remarking that Eqs. (4)  and ( 5 )  

do not predict the development of a plateau). 
methods used to derive (4) and (5) are intrinsically 
incapable of treating situations in which the wave 
velocity spacing is comparable to, or greater than, 
the trapping widths of the waves. 

The -- 

An analytical framework capable of acting as a 
good zeroth approximation to this situation would be 
very welcome. 
master equation approach, where 

We have experimented some with a 

than that. (The constant-phase limit is 7 = -.I 
Can we make a qualitative connection between 

the heating expected here and the well-understood 
results of the previous (constant-phase) cases? 
The answer is yes, if we characterize the electric 
field by its =-correlation function,6 

L/2 T/2 

T 
lim [ 
L + m  

[ EGOS [kox - wot + @(t)] 

- cos [ko(x+Ax) - w,(t+At) + +(t+At)l>> 

Here, n.(t) is the number of particles within the 
trappin: range of the ith wave, and Aij is a tran- 
sition probability per unit time for the particle's 

jumping from wave i to wave j. This approach still 
looks hopeful to us, but we have no quantitative 
success to report. 

C. ONE WAVE, RANDOMLY VARYING PHASE 

In diagnosing turbulent heating experiments, 
one frequently obtains probe signals which represent 
coherent oscillations for several cycles; then are 
interrupted in an apparently random way, and con- 
tinue to reappear and disappear. 
to simulate this type of oscillation by setting 

We have attempted 

;(t) = ;(t) - E  COS [ko x(t) - w t t $(t)l, (7)  

where E, ko, and w are again constants, but +(t) is 
a random number modulo 2s which jumps to a new value 
whenever t = nT, n = 1, 2 ,  3, ..., with a fixed 
interval of constancy T. 
from Eq. (7) turns out to be more efficient, as well 
as theoretically more interesting, than the heating 
in the constant phase cases. 

The heating which results 

In Fig. 2 ,  we see the temperature vs. time for 
different intervals of T. The ensemble average is 
over a hundred initial values of the phases. The 
trapping width 4-  is about 4 for all cases. The 
heating to be expected for @(t) = a constant for all 
t would give a temperature of about unity. 
temperature reached for finite T is clearly greater 

The 

I d k I  dw S(k,w) exp [i(kAx - wet)]. ( 8 )  

(Double brackets mean an ensemble average over 
initial phases.) 

The spectral density S(k,w) is proportional to 
the average energy density per unit wave number per 
unit frequency in the electrostatic wave field. We 

can think of those points in k,w space where S(k,w) 
is large as being the points where the waves are, 
on the average. 

For constant phase (7 = -1, we have 

Thus the only waves are at ko, wo, and -ko, -wo. 

For finite T, on the other hand, 

2 6(k - ko) sin ((w - w0)r/2) 
S(k,w) = 2 7 1 ~  2 

(w - wo> 

6(k  + ko) sin2((w + w0)r/2) 

E2 i 
+ 

;9b) 
2 (w + w,) 

Though for T . + m y  S(k,o)-.S, (k,w) uniformly, 

we see that for finite T ,  the effect is that of 
adding a distribution of waves whose wavelength is 
still 27r/k0, but which are continuously distributed 
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i n  frequency about w +,wo, over a region o f  w- 

space whose width can be est imated a s  Aw 1~ ~ T / T .  

This  width corresponds t o  a spread i n  phase veloci-  

t i e s  of  order  Aw/ko % 2n/ko?, which ranges from 

about 0.5 for  T = 64 t o  30 for T = 1. 

It is reasonable t o  expect t h e  p a r t i c l e  heat ing 

t o  increase  i n  magnitude as t h e  width of t h e  e f fec-  

t i v e  phase ve loc i ty  spectrum increases  ( T decreases), 

and t h i s  is apparent ly  what happens i n  Fig. 2. A 

countervai l ing e f f e c t  is t h a t  as T decreases ,  t h e  

maximum value of t h e  a d d i t i o n a l  t e r m  i n  Eq. (9b) 

decreases ,  thus  weakening t h e  o v e r a l l  f i e l d  s t r e n g t h  

of  t h e  a d d i t i o n a l  spectrum. 

migration of  p a r t i c l e s  over t h e  region of  v e l o c i t y  

space occupied by w/k, or a longer  t i m e  required t o  

a t t a i n  t h e  maximum heat ing.  

what has occurred f o r  T = 1 i n  Fig. 2, where t h e  

computer program ceases t o  be accura te  a t  a time 

when t h e  temperature is f a r  from its maximum value. 

This means a slower 

This is apparent ly  

I n  Fig. 3 ,  w e  show t h e  ve loc i ty  space d i s t r i -  

but ion funct ion a t  t = 300 f o r  each of  t h e  values  

of T .  

mately symmetrical, as it does f o r  t h e  constant-  

phase cases. 

D. 

The d i s t r i b u t i o n  of  v - <v> becomes approxi- 

ONE WAVE, DECREASING WAVE NUMBER7s8 

An important p r a c t i c a l  s i t u a t i o n  is  t h a t  i n  

which an e l e c t r o s t a t i c  wave propagates i n t o  a region 

of increasing dens i ty  a t  constant  frequency, with 

an a t tendant  decrease of wave number. This s i t u a -  

t i o n  can be simulated by t h e  equation 

C = E cos [k(x)x - w t  t $1, (10) 

where k(x)  is a slowly decreasing funct ion of  x. 

For def in i teness ,  w e  chose k(x) = (Itax)-'  ko, where 

a is a p o s i t i v e  constant  much l e s s  than one. 

Swif t7  has suggested t h a t  s i n c e  the  l o c a l  phase 

ve loc i ty  of t h e  e l e c t r i c  f i e l d  i n  Eq. (10) increases  

slowly t o  t h e  r i g h t ,  an i n i t i a l l y  trapped r i g h t -  

t r a v e l l i n g  p a r t i c l e  may be ab le  t o  r i d e  t h e  wave up 

i n  ve loc i ty ,  thereby being acce lera ted  t o  a much 

higher  energy f o r  given E than could be a t t a i n e d  by 

k = const. We now show how numerical c a l c u l a t i o n s  

show t h i s  conjecture  t o  be c o r r e c t .  

Figure 4 shows t h e  ve loc i ty  as a func t ion  of  

t i m e  seen by a s i n g l e  p a r t i c l e ,  t o  i l l u s t r a t e  t h i s  

e f f e c t .  The s o l i d  l i n e  is t h e  ve loc i ty  o f  t h e  

p a r t i c l e ;  t h e  broken l i n e  is d k  t xdk/dx)-', which 

is  t h e  instantaneous phase v e l o c i t y  seen by t h e  

p a r t i c l e  a t  pos i t ion  x. 

p a r t i c l e  before  it becomes "trapped" between t = 100 

and 200, and not  much happens t o  it af ter  it becomes 

"untrapped" around t = 800, but  while it is trapped,  

it acquires  a f a c t o r  of 1 6  i n  energy from a f i e l d  

s t rength  E t h a t  would produce a n e t  energy gain of  

a t  most 1~ 1.5 i f  k were constant .  

Not much happens t o  t h e  

Figure 5 shows t h e  ve loc i ty  d i s t r i b u t i o n  a s  

histograms f o r  var ious values  of a. The l i m i t  a 0 

is  t h e  case of  k const. I t  w i l l  be clear t h a t  not 

a l l  t h e  p a r t i c l e s  w i l l  r i d e  t h e  wave up i n  energy, 

and those t h a t  become "untrapped" experience no 

s i g n i f i c a n t  a c c e l e r a t i o n  t h e r e a f t e r .  

is ,  t h e  longer  t h e  p a r t i c l e  can remain t rapped,  

because small a implies  a very g e n t l e  acce lera t ion  

of t h e  phase ve loc i ty ,  and t h e  trapped p a r t i c l e s '  

behavior is e s s e n t i a l l y  ad iaba t ic .  This accounts 

for t h e  more e f f i c i e n t  acce lera t ion  i n  t h e  small  

a cases .  

- 

The smaller a 

This method of producing a few very energe t ic  

p a r t i c l e s  with small f i e l d  s t rengths  is bel ieved by 

US t o  have geophysical implicat ions.8 

I V .  SUGGESTIONS FOR THE FUTURE 

Two d i r e c t i o n s  appear t o  be f r u i t f u l  f o r  gener- 

a l i z i n g  these  numerical techniques. 

c lose ly  r e l a t e d .  

They a r e  

(1) General izat ion t o  more than one dimension 

(two dimensions a r e  probably more f e a s i b l e  than 

t h r e e ) .  

(2)  Inclusion o f  d.c. magnetic f i e l d s  i n  t h e  

equat ions of motion. 

One important e f f e c t  i n  t h e  two and t h r e e  

dimensional cases  is connected with t h e  fact t h a t  

t h e  condi t ion f o r  s t r o n g  i n t e r a c t i o n  of a wave and 

a p a r t i c l e  is much less r e s t r i c t i v e . '  It  is  t h a t  

+ - +  
w z k * v ,  

r a t h e r  than w 2 kv. This enables p a r t i c l e s  t o  be 

acce lera ted  t o  much g r e a t e r  v e l o c i t i e s  than t h e  

maximum value o f  w/ I k I . 
case, t h e  maximurn value of  w/k always s e t s  t h e  upper 

l i m i t  on speeds t o  which p a r t i c l e s  can be acce ler -  

a ted.  

+ 
For t h e  one dimensional 

. Secondly, t h e  addi t ion  of t h e  p o s s i b i l i t y  o f  

cyclotron resonancelo t o  t h e  t rapping a c c e l e r a t i o n  



descr ibed here  w i l l  g r e a t l y  enhance t h e  p o s s i b i l i -  

t ies  f o r  p a r t i c l e  o r b i t s  t o  d i f f e r  g r e a t l y  from 

t h e i r  conventional per turba t ion- therore t ic  values. 

It  does seem important a t  t h i s  s t a g e  t o  t r y  t o  

keep t h e  problems as simple and e a s i l y  understand- 

a b l e  as poss ib le ,  and t o  t r y  t o  keep them as t i e d  t o  

concrete experiments as poss ib le .  

e l e c t r i c - f i e l d  d iagnos t ics  ( s p e c t r a l  d e n s i t i e s ,  

au tocorre la t ions ,  e t c . )  are needed than a r e  now 

a v a i l a b l e  on most of t h e  turbulence experiments. 

would be easy f o r  theory and experiment t o  separa te  

a t  t h i s  point  j u s t  as they have f o r  o t h e r  types of 

plasma machines, with t h e  same r e s u l t i n g  obscur i ty  

and confusion. 

For t h i s ,  more 

It 
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Figure 1 Temperature a s  a func t ion  of t i m e  f o r  N = 1 and N = 10. I n  

both cases, v(0)  = 4.5 i n i t i a l l y  f o r  all p a r t i c l e s  and 

N 
1 E* = 0.025. 

i=l 

and E = 0.1581. 

0.25, w,ranges from 1.026 t o  1.110, and E = 0.05 f o r  a l l  t e n  

waves. 

I n  t h e  one-wave case ,  k = 0.18, w = 1.052, 

,For t h e  ten-wave case ,  k ranges from 0.13 t o  

i 

Ensemble average is over  100 "par t ic les" .  
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Figure 2 Temperature as a funct ion of t i m e  f o r  N = 1 and t h e  phase $ ( t )  

a random va r i ab le .  I n  a l l  cases ,  k 5 0.18, w = 1.052, and 

E = 0.1581. The only quan t i ty  being va r i ed  is  T, t he  i n t e r v a l  

over which $ ( t )  remains constant  before  it is  in t e r rup ted .  

Ensemble average is over 100 "par t ic les" .  

- 

r* - 
- r=4 f-J-- 

ONE WAVE,RANDOMLY PJJ * 

-VARYING PHASE p' 
/ 5.84 I 

- wi 
-Ki 

-= 

/ J  

L TEN W A d  

Figure 3 The number of "pa r t i c l e s "  per u n i t  ve loc i ty  range a t  t i m e  

t = 300 vs.  ve loc i ty .  

t o  t h e  N = 1 and N = 10 cases,  r e spec t ive ly ,  of Figure 1. The 

f i n i t e  T graphs correspond t o  the  r e spec t ive  cases i n  Figure 2. 

Tf;e arrows along the  ve loc i ty  axes i n d i c a t e  the  boundaries of 

the  t rapping ranges i n  t h e  constant phase cases.  

'IT = m3(' and "ten waves" graphs correspond 
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